
111J II. ■ll|.l^lB..l I"■!■,.■«.■, — iJIPPI

AD-778 497

PAS-II: AN INTERACTIVE TASK-FREE
VERSION OF AN AUTOMATIC PROTOCOL
ANALYSIS SYSTEM

D. A. Waterman, et al

Carnegie-Mellon University

Prepared for:

Air Force Office of Scientific Research
Defense Advanced Research Projects Agency
Public Health Service

June 1973

DISTRIBUTED BY:

KTlT
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

--'-■'■— ' ■■■' ''■•'■ ■ ■-' ■• ■ --"-— . . .„^.^^^^^.^^^^^^-^ ^ HI--- '-—\ u\mriniu*^*ltomm**mmm*mmmiimtl*läM*M<taa**lai*tät*m

WI^»WWt«f LM.IIJ .1 1JIH

UNCLASSIFIED
SECURITY CLASSIFICATION Or Th."S PAGE ftt7i»n Oaf* Entered;

REPORT DOCUmENTATION PAGF

/&) 772 ^97
READ INSTRUCTIONS

BEFORE COMPLETING FORM
I. REPORT NUMBER

AFOSR -TR -74 -0 688u
2 COVT ACCESSION NO 3 RECIPIENT'S CATALOG NUMBER

4. TITLE fand SuhtitXm)

PAS-II: AN INTERACTIVE TASK-FREE VERSION OF
AN AUTOMATIC PROTOCOL ANALYSIS SYSTEM

S. TYPE OF REPORT & PERIOD COVERET

Interim
6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR^«;

D. A. Waterman
A. Newell

8. CONTRACT OR GRANT NUMBERf«.)

F44620-70-C-0107

9. PERFORMING ORGANIZATION NAME AND ADDRESS
Carnegie-Mellon University
Department of Computer Science
Pittsburgh, Pennsylvania 15213

10. PROGRAM ELEMENT. PROJECT, TAS«
AREA A WORK UNIT NUMBERS

61101D
AO 827

It. CONTROLLING OFFICE NAME AND ADDRESS
Defense Advanced Research Projects Agency
1400 Wilson Blvd
Arlington, Virginia 22209

12. REPORT DATE

June 1973

U. MONITORING ÄOBNCV NAME ft AOORESSCff dlffarwil from Con(fo(//n« Ollic*)

Air Force Office of Scientific Research (NM)
1400 Wilson Blvd
Arlington, Virginia 22209

13. NUMBER OF PAGES

IS. SECURITY CLASS, (ol thlm report)

UNCLASSIFIED

IS«. OECLASSIFI CATION/DOWN GRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (ol (hi* Rmporl)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (ol thm mbtltset itlmnd In Block 30, It JHItronl from Raporl)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Conllnu» on rover«« »Ida U nmeftary and Idtntlly by block number)

1 by
NATIONAL TECHNICAL
INFORMATION SERVICE

n S D»p»rtm«nl ol Commai
Sinni'lioW VA ?T\5l

20. ABSTRACT fConllnuo on ravaraa tide //n«c«««ary and Idenllly by block number)
PAS-II, a computer program which represents a generalized version of an
automatic protocol system (PAS-I) is described. PAS-II is a task-free, inter-
active, modular data analysis system for inferring the information processes
used by a human ftom his verbal behavior while solving a problem. The output cQ
the program is a Problem Behavior Graph: a description of the subject's
changing knowledge state during problem solving. As an example of system '

operation the PAS-II analysis of a short cryptarithmetic protocol is presented, j

 ill
DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

/• UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Wh'n D*le Enf

■'-^ "- ' L MMM—UMtti'i ■ --

n9pmirwi>.. WPMWJ m "i" m ■!W"W"HW «W-WIIIHMII wmmim

PAS-II: AN INTERACTIVE TASK-FREE VERSION OF
AN AUTOMATIC PROTOCOL ANALYSIS SYSTEM

1). A. Waterman and A. Newell

Departments of ['sycholo^y and Computer Science
CarneKie- Mellon University
Pittsburgh, Pennsylvania

Abstract

PAS-II, a computer program which represents a
generalized version of an automatic protocol system
(PAS-I) is described. PAS-II is a task-free, inter-
active, modular data analysis system for inferring
the information processes used by a human from his
verbal behavior while solving a problem. The output
of the program is a Problem Behavior Graph: a descrip-
tion of the subject's changing knowledge state during
problem solving. As an example of system operation
the PAS-II anal ,is of a short cryptarithraetic pro-
tocol is presented.

1. ntroduction

Automatic protocol analysis is a joint effort
by man and machine to infer from the record of the
time course of a subject's behavior, the underlying
information processes. As developed (5), it usually
refers to the verbalizations of a subject solving
some problem under instvuetions to think out loud.
Protocol analysis designates the full range of activ-
ities engaged in by the psychologist whf>n working
vith protocols: description of the subject's
behavior according to an hypothesized model, induc-
tion of new rules, derivatio. of consequences from
a model in the context of specific data, and measure-
ment of adequacy of a model. The initial focus if
our work has been behavior description in terms of
information processes, given an hypothesized general
model (the so-called probl"-. space in which the
sub ject operates).

The PAS-1 system (14, 15) was our first attempt
at automatic protocol analysis. This is a fully
automatic, non-interactive, specialized system de-
signed to analyze cryptarithmetic protocols and pro-
duce as output a problem behavior graph (PBG)describ-
ing the subject's ser.ch through a posited problem
space. The protocol analysis is represented as a
sequence of procerslng stages that eventually trans-
form rhe raw pro'ocol into a problem behavior graph.
At eac.i stage rules are applied which effect a trans-
formation of the data. The organization of PAS-I is
shown in Figure I.

PAS-I has successfully analyzed protocols from
DONALIH-GERALD^ROBERT and CROSS+RDADS-DANGER crypt-
arithraetic problems. The results obtained in the
DONALLH-GERALD=RüBERT task for two of the subjects
have been discussed in detail (15) and demonstrate
that this approach to automatic protocol analysis is
both feasible and revardlng.

Encouraged by the success of PAS-I we have
designed and built an improved version called PAS-II.
PAS-II was designed with two major goals in mind: to
make it interactive and task free, by interactive
we mean that the user is permitted to take an active
part in the analysis: he can provide answers to sub-
problems the system is unable to solve, correct proc-
essing errors, and even raaiatain control over the
processing sequence. Clearly, real-time interaction
of this sort makes the system a more powerful tool

for protocol analysis. By task free we mean that
the system is independent of any particular problem
domain. To make PAS-II task free wo partitioned the
system into two parts: the problem denendent part
consisting of the processing rules or heuristics used
at each stage of the analysis, and the problem
independent part consisting of the general control
structure and command language. Thus, to apply the
system to a protocol in a new problem area the user
must first supply the system with processing rules
for that domain." The design of PAS-II also included
four subgoals: to make the system transparent,
modifiable, extendable, and open (see Figure 2).

Two important Implementation issues were not
addressed in the design of PAS-II. 1). Improve system
performance in cryptarithmetic. This includes
expanding the deductive and inductive inference
capabilities, and "fine tuning" the system by
optimizing the processing heuristics to produce the
best possible analysis within the given framework.
2). Extend the scope, of the analysis. For example,
extend the system back to handle the speech recog-'
nitiou and segmentation problems inherent in producing
a transcription from the audio tape. Or extend the
system to handle the problem of inducing the problem
space from the protocol or inducing a production
system raodtl from the problem behavior graph.

It was decided to make PAP-II interactive and
task free, postponing the problems of increasing
power in a particular task or broadening the scope
of the analysis. This decision was influenced by
the desire to provide a working tool for protocol
analysis that could be used by participants at a
workshop on New Techniques in Cognitive Research held

at CMU in the summer of 1972 (7). The PAS-II system is
currently running in LISP at CMU on a PDP-10 and is
available to the CMU (and the ARPA Network) corar.mnity.

This paper is organized as follows. The task of
protocol analysis is discussed in Secticm 2. This is
followed in Section 3 by a brief description of the
structure of the program and in Section 4 b an
example of Its use in analyzing a cryptariu.metic
protocol. Section 5 concludes with a discussion of
the general executive structure of the system and
itp implication for AI data analysis programs.

2. Task of Protocol Analysis

Protocol analysis is a complex data processing
task requiring both o^ductlve and inductive inference
capabilities. Our current approach to protocol analy-
sis is based on a particular theory of human problem
solving. For a description of this theory and an
introduction to the task of protocol analysis see
Newell and Simon (5).

Ultimately, a library containing processing rules
for a number of different problem domains will be
available to the user.

!■

— ■ -- - ■ ■ -- - ■ ---■

w*mi«mmmmm*w ^unimivm^*

Topic
Segments

ItwoO's]
{each DisS|
llherefore, Tlsiero)

LINGUISTIC
PROCESSOR

Semantic
Elements

(NUMD2)
(EQ06)

(THE',-^^RE)(EQTO)

SEMANTIC PROCESSOR

PBG

GENERATOR

Stepl

Temporal
Integration

Step 2

Normal-
ization

Step 3

Extract
Next
Protogroup

Prologroup
Op (PC1)
Kn: (BECAUSEOF (Eü D 5MEQ T 0))

i n ^— T r C1 0

PBG
Information

Group

Op (PC 1)
ln.((EGC1 0)iEOD5|)
Oul:(EOT0)

Figure 1. Flow Diagran. of PAS-I.

GOALS

Interactive:
Task Free

Sl'BGOALS
Transparent:

Modifiable :

Extendable

Open

User and system exchange information during processing.
System is independent of any particular problem domain.

System is easy to use and understand by virtue of a clean
organization and the ability to explain itself,

lasic changes in the dt.ta processing procedure can be made
by a user with no knowledge of the language used to program
the system.

The programmer can easily enlarge the system to encompass
a wider range of the data analysis.

The user, rather than the program, initiates and controls
the interaction and accordingly gains ultimate control of
the processing sequence.

Figure 2. Design Considerations for PAS-U.

06 '

■■ — — MMi

Tliooro t lcaj_jMjhstruc ture

r'roblem Space. We assume human problem solvR
takes place by search in a problem space. The ele-
ments of this space are the possible states of krw.jl-
eclHe the subject can have about the task, where a
state of knowledge is simply an expression of what the
subject knows at some particular point in the space.
Besides knowledge states, the problem space also In-
cludes a set of operators. These define operations
the subject can perform on knowledge at a particular
state to yield new knowledge -- hence to move to a
new knowledge state. The operators are incremental,
that is, they take as input a small portion of the
total knowledge state (a small set of knowledge ele-
ments'» and produce as output new knowledge elements.

Problem Behavior Craph. The subject's search
through the problem space for a solution can be des-
cribed as a sequence of operator applications that cre-
ate a string of incrementally changing knowledge states.
The plot of this search is called the problem behavior
graph (PBG). Figure 8 (also used to illustrate the
output of the analysis given in Section 4i shows a
problem behavior graph for cryptarithmetic. The nodes
represent operator applications: the knowledge ele-
ments at the lower left of each node are the inputs,
those at the lower right are the outputs. PBG
branching results from the subject .Voandoning infor-
mation and returning to a prior knowledge state
(usually because of a discovered contradiction). For
example, in Figure 8 the outputs of nodes -4 and 6
onflict: "R is 4" conflicts with "R is odd," and
leads to the abandonment of nodes 4, 5 and A. Note
that the knowledge state at any point in the graph is
the conjunction of all output elements on the path from
the given point back to the beginning of the grarii.
All nodes on the path from the last node back to the
beginning of the graph are called currently active
nodes. Their output elements define the current
knowledge state.

Data Analysis

The data being analyzed is the transcribed text
of a subject's verbal protocol. As the text is trans-
formed into a PBC; it is subjected to four major fpes
of processing: linguistic, samantic, group, and PBG.
Figure 1 typifies such a processing sequence.

Linguistic Processing. The text is first
segmented into shorter strings called topic segments,
each of which is expected to ultimately yield approyi.
mately one problem space element. Each segment is
then parsed using a grammar sensitive to the problem
domain under consideration. The result of parsing is
a set of semantic elements which represent the meaning
of the segment. For example, the segment "D is not
equal to 6" might yield the elements (NKG)(EQ D 6) in
the cryptarithmetic task. Here (NEC) is called
an indicator element, (EQ D 6) a knowledge element.

Semantic Processing. The semantic elements
produced through parsing are first combined in very
elementary ways to produce new elements, i.e., (NKG)
and (EQ I) 6) become (NEQ I) 6). Next, new elements
reflecting relatlonshif.s between elements from
adjacent segments are produced. Thus, (EQ D 5) from
one segment and (THEREFORE)(EQ T 0) from the next
segment become (BBCAUSEOF (EQ I) 5)(EQ T 0)), e.g.,
"because D is 'S, T is 0." Finally, these elements are
arranged into initial approximations of operator groups,
each containing an operator element and the surround-
ing knowledge and indicator elements. An operator

group Is defined to be an operator together with its
iuput and output knowledge elements.

Croup Processing. The tentative opeiator groups
produced during semantic processing are now analyzed
to obtain a complete picture of what the subject knows
at each moment and what operators he applies. First,
variables in semantic elements arc identified by com-
paring the elements to the current context as defined
by the PBC. Thus if (EQ 1) 5) were in the PBC then
when given the element (EQ <L> 5) , where <L> stands
for a class of letters, we recognize that <L> in this
case is the letter D,

The second part of giiap processing consists of
finding, or hypothesizing, the origin of every knowl-
edge element in each tentative group. The origin of
a knowledge element is defined to be the operator
which producer1 it, plus the inputs to that operator,
plus the operators which produced those inputs, etc.
Thus the origin can be represented as a tree which
defines a collection of overlapping operator groups.

PBC Processing. The operator groups produced
during group processing are now iicorporated into the
PBC. In general, each group becomes a node in the
PBG. In the simplest case the new node is just
attached to the last currently active node. However,
when contradictions occur (the output of one node
conflicts with the output of another) restructuring
occurs to eliminate the conflict (see Figure 8).

3. Structure of the Program

PAS-1I takes as input a transcribed text of the
verbalization oi a subject solving a problem and
produces as output a PBC, The processing rules for
the various stages, including the rules defining the
problem space, are given to the system. These rules
are supplied cither by the system builder via a
library of rules for various problem domains or by
the user himself.

Modular f■rueture

PAS-11 is organized as a modular data anal; sis
system. The basic unit of organization Is the mode:
a processing state which has associated with it a
buffer capable of holding rules or data. This buffer
can be modified by the editing functions available In
the command language. There are three types oi modes:
run modes, which hold the data being analyzed, rule
modes, which hold the processing rules, and auxiliary
modes, which hold task-free system-oriented r lies.
Thus the Information in the nil.- modes constitutes the
problem dependent part of the system.

The next level of organization is the stage: a
unit consisting of one run mod" and any number of
associated rule modes. Data piocesslng is performed
In a stage by applying the rules from the rule modes
associated with tha'. tage to the data present in the
run mods of the previous stage. The result of the
processing is Lh^n put into the run mode of the current
stage. Figuri" 1 illustrates the modular organization
of PAS-11, with the arrows indicating data flow and
the lines indicating mode associations.

The highest level of organization Is the
processor: a unit consisting of consecutive stages
In the control cycle. For example, in PAS-11 two
linguistic stages form the Linguistic processor and
three bemäntle stages form the Semantic processor.

,-... ..._ .-. _ —

'•"nmismi 1 "" ■ i-iiiiii". mmmm?*m'*mnmii*mmm

!

N
or

m
al

iz

at
io

n
M

od
e

rz

In
te

gr
a

tio
n

M

od
e

U
01

•D

(/3

i

P oi

E?
O u

'S 01
.2 -D
D O |s

01 01

c
o

m O

X
Ul

U
ä oi

3 0 M

. Mi U 01

a5^
O

IC
o
U3
LU
u
o
Du

u
I- z
<
5

t/l c
5 oi
c ^

,y oi

a o

o m
m
UJ
o
o
oc
CL

C3

01 o ■o
m o
a. S

01 ~ •D
c O
o ? o

o
tu
u
O
£E
Q.

O
to
to
UJ
o
o
ir
a.
a.
D
O
er
O

— c

< |

0 ö
C C
O (/•

-_ Q;

»i o
£ E
a >
o |
S x

ll o ~

n
01
3

y.

 ■

■ i nujinmprwm wiiumumni (.111,1.1™ I.,IIBUI

9

B

A

S

I

C

F

L

A

G

P

R

0

C

E

S

S

FUNCTIONS

NAME DESCRIPTION

(mode name)

CREATE

DISPLAY

ERASE

EXIT

HELP

MODE

VEXT

RULE

RUN

BREAK

CONNECT

DEFINE

DELETE

ED

INSERT

READ

RENUMBER

WRITE

AUTOMATIC

BATCH

COMMENT

FAST

HUSH

NUMBERS

PRINT

SEARCH

SUPPR1^

TIME

VERSION1

VERSION2

AGAIN

COPY

GO

RECOPY

RESTART

START

Puts user Into the mode named.

Creates a new mode.

Displays the contents of M.

Uncreates M (if it was formed usin« CREATE).

lakes the user out of the system (to LISP).

Provides system information pertinent to M.

Tells the user what mode he is ir.

Puts the user into the next appropriate run mode of C.

Puts the user Into the rule mode associated with M.

Puts the user into the run mode associated with M.

Breaks a line In M into two or more smaller lines.

Connects adjacent lines in M to form a single line.

Permits the user to define the contents of lines in M.

Deletes lines in M.

Enables the user to perform intra-line editing in M.

Inserts a line alter a given line in M.

Reads data from a disk file into .1.

Renumbers the lines in M.

Write the contents of M onto a disk file.

Steps the user through C, executing CO in each run mode.

Stops system queries during run mode processing.

Permits comments to be displayed when a line is displayed.

Speeds up reading from the disk by eliminating format checking.

Abbreviates error messages.

Causes disk files to be written with buffer line numbers.

Puts all the I 'o at the terminal onto a disk file.

Cause? processing to be repeated until no rules are applicable.

Suppresses printing of auxiliary information during processing.

Causes processing time in M to bo printed.

Causes the old version of grammar'parser to be used.

Causes the new improved version of grammar par er to be used.

Puts the data in M into P and fires GO.

Prints the copy of the data in H.

Processes the data located in P and puts the result into M.

Puts the copy of the data from M back into M.

Puts the copy of the data from P back into P and fires START.

Deletes the Czca in M and fires GO.

KEY M: mode buffer of the mode the user is in
P: mode buffer prior tJ M in C
C: control cycle

-

Table 3. Description of PAS-il Functions
(Flag description« are for the condition flag = T)

i>-

____ _-. .. MMH ■MMMaMMUMMMH

mm i"' 11

o z '

IT
o
C/)
to
LU u
o
oc
a
O

<
LU

O
w
ai
O
o
cc
a.
O
H

2

IT
o
LU
CJ
o
a.

a.
O
I-

A
/ U A. "

Ö _ *i V ■

V Q - g '
\
\
\

Y
 i

$/

■

E </)

E3-
CN

—
c
o r 7 f

E « O
Q) z

W

E <55

>x
\
i- \

H
/to .y \

-. rt •— & /

v
C3

3 5
E'en

.s en m c
i: o ^

cr
O
1/3
CO
LU o o
oc
a.
a.

O

o

M
.y u
Q. (0
2 £5

E

O

a. m

cr
O
to
to
LU
o
O
CC
a.
(5
JO
Q-

g a
Q. aj

TO -O

QJ CJ

c c

ZJt XJi

I
I

I

/ /
/ ID

I
I

v
0) •
> I
 ^

\

o \Z

i- CO c?2

t

5 s. ro
c
o

Kg C

(0 o
OJ -

c

I 2
| E
3 tS

1= w
O (/5

m O
"D B

o
CO
CO
LU
CJ o
cc
a.
LU o
<

O)

^ <u c
u S1 ^
S 2
^co

u *-• n s

7.

. -...-..-.-JI — Mta^UMiMMMI J

mmm
MMMMMMM

segments is parsed yielding sets of semantic elements
Ihese elements are processed and refined in the
Semantic processor to produce groups composed of one
operator element and its associated input and output
knowledge elements. In the PBG processor these groups
are incorporated into the PBG. The Trace processor
is then used to compare this PIK; with the trace
produced hy a given production system model of the
subject.

Topic Processor. The Topic processor contjins
two run modes: TEXT and TOPIC. TEXT is an initiali-
zation mode; it holds the data for TOPIC to process.
Thus no real processing takes place in it. The
TOPIC mode uses the SEGMENTATION rules to segment all
the text in the TEXT mode. These rules have the
general form: string), ' string,, , where a string is
any sequence of words, punctuation marks, or word
classes (as defined in the GRAMMAR mode), including
the null sequence. The slash (/) indicates where the
text is to be broken, i.e., after every occurrence
of string1 that is immediately followed by an occur-
rence of string,. Figure 6 show SEGMENTATION rules
for cryptarith-.netic (to be used in the example in
Section 4') .

Linguistic Processor. The Linguistic processor
contains two run modes: LINGUISTICl and LINGUISTIC
In LINGUISTICl the EXTRACTION rules are used to select
a consecutive set of segments from TOPIC, representing
an initial guess as to the minimum number of segments
from which a group can be inferred. Processing con-
sists only of transferring these segments from the
TOPIC mode to the LINGUISTICl mode. At present, the
EXTRACTION rules are simply a single integer speci-
fying how many segments to transfer.

Processing in the LINGUISTIC2 mode consists of
applying the SPACE and GRAMMAR rules to all the topic
segments in LINGUISTICl. The parsing operation pro-
duces, for each segment, a set of semantic elements
representing the meaning of the segment. The rules
in the SPACE mode define the problem space and have
the form:" (semantic-element) type, where a semantic
element is either an operator, knowledge, or indicator
element, _and the type is either OP, KN, or IND. The
GRAMMAR rules define a key-word grammar and have the
lorm: <class> = (iten^ item^ ...) (item item

/;■' J'J t! Wher,e au itera is either a class
(denoted by angle brackets) or a literal (such as a
word, letter, or character). An asterisk (*) can be
used between any two items to indicate a match with
any string of text, and any GRAMMAR rule which is a
disjunction of single literals can be written without
parantheses. Figure 6 shows SPACE and GRAMMAR rules
for cryptarithmetic.

Semantic Processor. The Semantic processor
contains three run modes: SEMANTICl, SEMANTIC and
SEMANTICS. In SEMANTICl the INTEGRATION rulc-s produce
new elements by combining semantic elements generated
from the same or adjacent segments. In SEMANTIC2 the
NORMALIZATION rules map knowledge and indicator ele-
ments into single elements reflecting the relationships

existing between two or more knowledge elements. In
SEMANTIC) a tentative operator group (protogroup) is
formed. The INTEGRATION AND NORKAUZATION rules are
replacement rules of the type A => li, i.e., replace
A with B. Both A and li can be lists of semantic
elements. A slash (/) indicates that the next
elements of the list occur on the next line of the
mode buffer. Class names and X's are used as vari-
ables, and in the NORMALIZATION rules A's are vari-
ables which stand for knowledge elements on adjacent
lines connected by the AND indicator. Typical
INTEGRATION and NORMALIZATION rules for crypt-
arithmetic^are shown in Figure 6. GROUPING rules are
not shown." They define a protogroup to be the
largest consecutive sequence of elements containing
no more than one operator element.

Group Processor. There are two run modes in the
Group processor: GRAPHIC1, and GRAPHIC2. GRAPHICl
processing fills in the values of variables in the
semantic elements by comparing the element containing
variables with all the elements currently active in
the PliG, i.e., the current context. When a match is
found the appropriate values are filled in. Currently
the UNKNOWNS rules are not accessible to the user.

Processing in GRAPHIC2 is a joint man-machine
effort."" The goal is to hypothesize for each knowl-
edge element its origin, i.e., the operator and its
inputs (and the operators that produced those inputs,
etc.) that produced that knowledge element as output.
The system queries the user asking for possible
operators and inputs that could have produced the
element whose origin is being sought. From this
information the system constructs an origin tree,
and hypothesizes which path through the tree repre-
sents the actual origin of the element. The path is
picKed on the basis of the agreement between the
hypothesized inputs and the actual context defined by
the current PBG. The ORIGIN rules, like the GROUPING
and UNKNOWNS rules, are currently not accessible.

PBG Irocessor. The PBG processor contains one
run mode: GRAPHIC3. In the GRAPHICS mode, processing
consists of taking the operator groups produced in
GRAPHIC2 and incorporating them into the problem
behavior graph. The CONFLICT rules are used to deter-
mine whether or not any knowledge elements in the
operator groups conflict with knowledge already in the
PBG. If such a conflict occurs, the PBG rules are
used to restructure the PBG so the conflict is
eliminated.

SPACE rule 8 in Figure 6 is an exception. It
defines a set named <V> containing tvo members,
the class <LETTER> and the class -XARRY>.

Two parsers are available, a simple top down
parser and a more sophisticated parser written
by M. Rychener.

At the current stage of development the Grouping
rules have not been made accessible to the user.

This is the major place where we have not regained
in PAS-II the power for automatic processing
available in PAS-I.

1

I T Mhlil llilH ill -^_ ——

■iwp8"^puiiiiiu«imiiMMBwyifljwii^iiwii.ii w,mM-mm*'v"*- '' '

Both the CONFLICT and PBG rule.s are ordered

production rules of the form S A, i.e., in situation

S take action A (12, 13). A situation is defined by
a list of values of certain variables, called the

state vector, SV. The left side of each production
rule has the form (V, V0 V ...), where V^ repre-

for

),

1 z \ ' ' n
Bents a permissible value lor the nth state vector
variable. The rl^ht side has the form (A. A. A

where the A's represent action» to be taken. The cur-

rent values of the state vector variables are compared
with the left side of each production rule. The first
match, from top to bottom, determines the actions to
be taken (an asterisk is considered to match any value),

Figure 6 shows CONFLICT and PBG rules for
cryptarithmetic . The CONFLICT rule.s determine

whether or not two siven knowledge elements conflict.

The examile CONFLICT state vector contains: (SAME 2),
which is true (T) if the second items of both the

elements are identical and false (F) otherwise;
(ITEM 11), which returns as a value the first item

of the first element (the element in the PBG); and
(ITEM 12), which returns as a value the first item

of the second element (the element in the group).
Thus if the two elements being compared were (ODD R)

and (NEO R 5) CONFLICT rule 3 would match the state
vector and the decision would be that no conflict
exists.

The PBG rules determine the type of restruc-
turing that occurs once a conflict is detected. The
PBG state vector In Figure 6 has 2 variables: TYPE,
which has the value CON if restructuring is baged on
conflict and SIM if it is based un similarity;' an:'.

(ITEM 1 2), which is defined above. The actions shown
in Figure 6 are PLOCKREJ, a type of restructuring

where blocks of .djacent nodes are abandoned, and
COPY, a specification that the group causing the

restructuring should remain in the active portion of

the PBG after restructuring. The state vectors for
CONFLICT and PBG may contain variables and actions

other than the ones shown in Figure 6. For a complete

description of these rules see the PAS-II reference

manual (16).

Trace Processor. The Topic, Linguistic,
Semantic, Group and PBG processors comprise the major

portion of FAS-II. It is this portion which repre-
sents a generalized version of PAS-I. The Trace

processor is a new extension to the system and has no
analogue in PAS-I. Some parts of it, like the MATCH
.node, are still under development. The Trace proc-

essor enables the user to write a production system
model of the subject (6) , and then compare the trace

obtained by running the production system model with
the PBG obtained by analyzing the protocol. The
details are described elsewhere (16).

to analyze the given protocol, and are for expository
purposes only."

The annotated listing is shown below. The user

input is in lower case and the system output in upper

case. The system prompts the user by typing either
an asterisk (''■') or a question followed by a question

mark (?).

«text 'lir.pl,uj

TEXT MODE

1, D IS 5 | THEREFORE T IS 0 . flSSUHE R EQUALS 4 . SINCE YOU

CARRY 1 , R IS ODD . RSSUHE R IS 7 , NOT 5 .
♦next qo

TOPIC tlOOE
1. D IS B |

THEREFORE T IS 6 .
RSSUhE R EQURLS i .
SINCE YOU CRRRY 1 ,
R IS ODD .
BSSUHE R IS 7 ,
NOT 5 .

Or' yes
TOPIC MODE FINISHED
*neM qo

LINGUISTICl MODE
1. D IS 5 i
2. THEREFORE T IS 0
3. BS3UME R EQURLS 4
4. SINCE YOU CRRRY 1
5. R IS ODD .
G. ASSUME R IS 7 ,
7. NOT 5 .

OK' yes
«nex t go

DONALD D

+ G E R A L D

R 0 B E R T

The above expression is a simple arithmetic sura in

disguise. Each letter represents a digit, that is,
u, 1, 2, ..., 9. Each letter is a distinct digit.

You are given that D represents the digit 5; thus,
no other letter may be 5.

What digits should be assigned to the letters such

that when the letters are replaced by their corres-
ponding digits the above expression is a true
arithmetic sum?

Figure 5. Cryptarithmetic Task

4. Example of Program Operation

To illustrate the use of PAS-II, we present a
listing of the actual user-machine interaction in-
volved in the on-line analysis of a short crypt-
arithmetic protocol. The cryptarithmetic task is

given in Figure 5. Boi'n the protocol and the crypt-
arithmeti'-. rules used for this example are shown in
Figure 6. The protocol is stored in the TEXT mode
and the cryptarithmetic rules in the eight rules modes

shown. These rules approximate the minimal set needed

The user first entered the TEXT mode and dis-
played its contents. He then entered the next mode

in the control cycle, TOPIC, and started processing
by typing GO. This caused the SEGMENTATION rules to
be applied to the data in TEXT. The system indicated
that the data in line 1 of the previous mode had been
transformed into the seven lines shown above, and

asked If this transformation was satisfactory (OK?).
At this point the user typed yes, telling the system
to actually put those seven lines into the next seven

The PBG rules are also used for restructuring when
similarities (identical nodes) are detected, as

discussed in an earlier paper on I'AS-I (15).

7

At least four times as many rules would be needed
for a complete set '15) .

mm*mim*^m^i*** —m^-^^mmr* 1 ■' ■' -""■■ —

TEXT MODE
I. D IS 5 j THEREFORE T IS 0 . ASSUME R EQUALS 4

CARRY 1 , R IS ODD ASSUME R IS 7 , NOT 5 .

SPACE RULES
1. (NEG) IND
2. (ODD <v>) KN
3. (EO <V> ..DIGIT» KN
4. (THEREFORE) IND
5. (BECAUSE) IND
6. (ASSUME) IND
7. (DIGIT <DIGIT» KN
8. «V> <LETTEK> <CARRY» SPASET

GRAMMAR RULES
1. <E0> = «CARRYEO» «LETTER) * <EQUAL> * <DIGIT»
2. CARRYEQ) = «CARRY) * <DIGIT» «CARRY»
3. <ODD> = «LETTER) * <E0UAL) * ODD)
4. <EOUAL) = IS EQUAL EQUALS BE WAS ARE
5. miG> = CANNOT NOT NO N'T
6. <THEREFORE) = THEREFORE IMPLIES
7. <ASSUME) = ASSUME ASSUMING
8. <BECAUSE) = BECAUSE SINCE
9. <CARRY) = CARRY CARRYING CARRIED

10. <LETTER> = ABDEGLNORT
! 1. <DIGIT> = 0123456789

SEGMENTATION RULES
I../
2;/
3. <DIGIT) , /
4. <LETTER) , /

SINCE YOU

1. 12
EXTRACTION RULES

INTEGRATION RULES
1. (Xl CARRY X2) =) (XI <C)X2)
2. (EQ XI X2) / (DIGIT X3) =) (EQ XI X2) / (EQ XI X3)
3. (NEG) (EQ <LETTER) <DIGIT)) => (NEQ <LETTER) <DIGIT»
4. (ASSUME) (EQ <LETTER> <DIGIT)) =) (AEQ (LETTER) <DIGIT»

NORMALIZATION RULES
1. Al / (THERLrORE) A2 =) (BECAUSEOF Al A2)
2. (BECAUSE) Al / A2 •> (BECAUSEOF Al A2)

CONFLICT RULES
1. SV= ((SAME 2) (ITEM 1 1) (ITEM 1 2))
2. (F * *) => NO-CON
3. (* ODD NEQ) =) NO-CON
4. (* * *) =) ASK-IF-CON

PBG RULES
1. SV= (TYPE (ITEM 1 2))
2. (CON NEQ) =) BLOCKREJ
3. (CON *) =) (BLOCKREJ COPY)
4. (« *) =) BLOCKREJ

KiKure 6. Cryptarit'.metic Rules.

to.

-'»--"-'"- —.-^1—J.»:«-^Am^ -" — ^-^ — - —-

-^ .~-r- WIH^HU

lines ol the TOPIC buffer, If the processlnf, had

been unsatisfactory, the user could have jumped to
the SEGMENTATION mode, changed Che rules, jumped
back to TOPIC, and reprocessed the data usinK the now
rules before proceeding with the next processing step.

The user Chen entered Che nexC mode, I.INCUISTICI,
and scarcod processing. The EXTRACTION rules were
applied to the seven 'ines of daca in TOPIC and Che
sysCem indicated that Che processing should consist of

placinc these lines in LINGUISTICI unchanged. Note
Chac Che sysCem indicaCed Chac line 1 from TOPIC was

transformed inco a single line in LINGUISTICI, etc.,
as opposed Co Che previous sCep where one line in TEXT
was transformed into seven lines in TOPIC.

SEMANTICS nnOE
Rutis nm ICD i 1
1-7. ([UCRUSLOF UEQ 0 5)) I (EQ I 0)11

(flEQ R 41
(lucnuscor nto <c> m MODD RID

(flEQ R 7)
(NEQ R b)

OK? yoi
SEMRNTIC: noot FINISH'"

SflinNTIC3 MODE
1. (RECntlSEOr ((EQ 0 S)l ((EQ T 0)1)

. (IHQ R 4)

. (BECflUSEOF ((E0

. (REQ R 7)

. (NEQ R b)
yss

C> D) ((ODD Rill

UNGUISTlCr MODE
<E0> <LETTER> 0

.EQLIBL» IS
«DIGIT» 5

1. (FQ D b)
FROM : D IS S i

OK' yes bA(ch suFipress
BRICHT
SUPPRESS^T

2. (EQ T 0) (IHERFFORE)
FROM : THERE(0RE 1 IS 8 .

3. (EQR ♦) (RSSUHE)
FROM : RSSUflE R EQURtS 4

4. (EQ CARRY II (BECAUSE)
FROM I SINCE VOU CARRY 1

B. (ODD R)
FRDrt ; R IS ODD .

6. (EQ R 7) (ASSUnt)
FROM : RSSUnE R IS 7 ,

7. (NEG) (DIGIT 5)
FROM : NOT 5 .

t INGUISTIC2 nODE FINISHED
-:(b.ltch (Msuppress () flutomanc
BRTCHrF
5UP)'RE3S=F
RUTOMRTIC^T
«next 90

Processing in [.INGUISTIC2 consisted of applying

the SPACE and GRAMMAR rules Co Che daca In LINGUISTIC]
Co produce a parse. In sCep 1 Che parse Cree was
prinCed and Che user sec Che flag HATCH Crue to

eliminate Che OK? question (Che sysCem Chen assumes
ehe answer is always yes) and Che flag Sl'PPRESS Crue

Co eliminaCc further prindng of Che parse trees.
Then, before noing Co Che next mode in the control

cycle, Che user see the flag AUTOMATIC crue so Che

sysCem would auComaCically sCep through Che appropriate
run rodes execucing GO. Ac this polnC Che LINGUISTIC2

buffer held Che seven sees of scmancic elemenCs shown
above.

SEMRNTICl HDOE
RUCES HPPCIEO ; 4 12 4 3

1. (EQ D 5)
2. (ED T B) (THEREFORE)
3. (REQ R 4)
4. (BECRUSE) (EQ <C> 1)
5. (100 R)
6. (REQ R 7)
7. (NEQ R 5)

OK 7 yos
SEttHNTICl MODE FINISHED

Processing in SEMANTIC] consisted of applying Che
INTEGRATION rules to the semantic elements in

LINGUISTIC2. As indicated above there were five

applications of the rules. Processing in SEMANTIC*

consisted of applying the NORMALIZATION rules to the

seven seCs of elemenCs in SEMANIICI. There were two
applications of the rules, and five seCs of elements

were left in SEMANTIC2. Processing in SEMANTICS con-
isisCed of applying Che GROUPING rules, which are noc
explicit. These rules simply atCempCed Co pull from
SEMANTIC2 one operafor element and its associated

knowledge elements. Since no operator elemenCs were

present, it pulled all Che elemenCs from SEMANTIC2.

GRRPHICI MODE
1. (BfCRUSEOF ((EQ D 5)) ((EQ TOD

FRON : (BECRUSfOF ((EQ 0 SD ((EQ T 8)))
0) ? yos

2. (REQ R 4)
FROM | (REQ R 4 1

OK' yes
3. (BECRUSEOF ((EQ -C^ 1)) ((ODOR)))

FROM ; (BECRUSEOF ((EQ .C> Ul ((00D RD)
0» ' yes b.itc(i suppress r: (becauseof ((eq c2 l))((odd r)l)
RATCHET
DO YOU REALLY URNT BOTH RUTOHRTlCrT RND BRTCH.T ' yet
SUPPRES3=T

4. (REt) R 7)
FROtl ; (REQ R 7)

5. (NEQ R 5)
FRON I (NEQ R b)

GRRPHICI ntüE FINISHED

Processing in CRAP111C1 consisCed of applying Che

UNKNOWNS rules, which are noc expliciC. These rules

involve searching Che exiscing PBG for elemenCs ChaC
match the elements containing unknowns. In Chis

simple example no maCches were found because the PBC
had noc ye* been grown. Thus, In sCep 3 when Che

unknown carry <C~- was noc found, Che u er Cold Che
sysCem to replace iCs processing result wich

(BECAUSBOF ((KQ C2 I)) ((ODD Rl> K This was puc
InCo line 3 of Che CRAPHICl buffer, rather Chan the

result containing <0. In effect Che user Cold Che

sysCem l:3C Che value of <I> was C2, i.e., Chac Che
unknow i carry was Che carry inCo Che second column
(Che I.+L-K column^ .

Process'ng in GRAPHIC2 and GRAPHICS occurred as

follows: GRAPHIC2 was enCered and Che elemenCs from
line 1 of CRAPHICl were processed InCeracCively Co

deCermino Cheir operacor groups. GRAPHICS was Chen
enCered and diese groups were grown as new nodes in the
PBG. Next GRAFHIC2 was reentered and Che elemenCs

 "- -

^■Pt.LILJfcl^.MIM.

wmmmm wmwm WPWSPW^^W

from line 2 of CKAPHICI processed. This Kraphic2-
graphlc3 loop was repeated lor each line in GRAPHICl,
Below is show.-, only one of these loops": processing
and growinn the elemonta from line 3 of GRAPHICl.

CRnPMicr nooE
FOR (BECRUSEOF ((EQ C2 U) (10D0 K))) !
OP = (pc n
r'JTPUTS = (odd r)
IKPUTS r (eq c2 1)
FOR (EQ C2 l) :
OP r (av cD

iNPtna ■
OTHER ORIGINS FOR (EQ C2 1) 7 yes
FOR (EQ C7 II :
OP = (pc 1)
INPUTS = (cq d 5)(eq cl 9)
(EQ 0 51 FOUND IN PRO
(EQ Cl 0) F0UN0 IN PBG
OTHER ORIGINS FOR (ED C2 II ' no
ORIGIN TREE :
(ODD Rl (PC 21 (EQ C2 II (RV c:i

(PC II (EQ D 51
(EQ Cl 01

3. (PC 11 ((EQ 0 51 (EQ Cl Oil (EQ C2 11
(PC 21 ((EQ C2 111 (000 Rl

FROM ; (BECRUSEOF ((EQ C2 111 ((ODD Rill

GR1PH1C3 IDDE
1. CROW (EQ C2 11

FROH (PC 11 ((EQ D 51 (EQ Cl Oll (EQ C2 11
DO (flEQ R 41 BND (00D Rl CONFtlCT ? yes

2. CONFLICT: N4 (REQ R 41 AND (ODD Rl WITH (BLOCCREJ COPVl
FROM : (PC 21 ((EQ C2 111 (ODD Rl

CRHPi;iC3 nODE FINISHED

In c;RAPIilC2 the system queried the user to deter-
mine possible origins (operators and their inputs) for
the elements in question. This information was
represented as an origin tree as shown above. This
tree is displayed below in a more conventional style.

where an input is "used" il it occurs in the PIKi,
Thus (AV C2) has a rating if 0 while (PC 11 has a
rating of (Ix^l-O or (>. The format of the operator
groups produced in GRAPH1C2 is: operator iInput
list) output.

In GRAPHIC3 the iwo groups from GRAPH1C2 were
incorporated into the PBG. The second group, with
(dUI) Rl as the output, conflicted with an existing
group in the PBt; and led to restructuring of the PBC
to resolve the conflict. Conflicts were defined by
the CONFLICT rules, the type of restructuring by
the PBG rules."

*qrflphic3 display
CRRPHIC3 MODE

NJ 8 OP (RECALL Dl OUT (EQ D 5)
N OP (RECHIL Cll OUT (EQ Cl 01
N3 OP (Pf M IN (EQ 0 51 IEQ Cl 81 OUT (EQ
N4 OP (fW '1 OUT (REQ R 41

NS OP (PC 11 IN (EQ 0 5) (EQ Cl 01 OUT (EQ

N6 OP (PC 2 IN (E0 C2 11 OUT (ODD Rl
N7 3 OP (PC 11 IN (EQ 0 51 (EQ Cl 01 OUT (EQ
N6 OP (PC 21 IN (EC C2 11 OUT (0D0 Rl
N9 OP (RV Rl OUT (REQ R 71

N1D OP (TO R 5 IN (EQ D 51 OUT (NEQ R 51

T 01

After all the data from GRAPHIC! was processed
in GRAPH1C2 and GRAPHIC3 the contents of GRAPHICS
were displayed. Each line in the display represents
a node in the PBG. Node 10 contains the operator:
test to see if R can have the digit 5 as a value,
(TD R 5). Figure 8 shows this PBC in the conven-
tional representation. Note that the conflict between
(AKO R A) and (ODD Rl led to a back-up that abandoneJ
nodes 4, 5 and 6. Thus the currently active nodes,
the ones that define the current context, are those
joined by the heavy lines in Figure 8.

output:

operators:

input output:

operators:

input:

(>)1)U R1

(ttt

(PC 2)

.C2,l)

(AV Cl) (Pfc, 11

(EQ D 5 (EO Cl 0)

Figure 7. Origin Tree

The system analyzes the tree and decides which path
represents the best origin for the top element, in
this case (ODD R). Here there are only two alter-
natives: the path with the operator: assign a value
to the carry into column 2, (AV C2), and the path
with the operator: process column 1, (PC 1). The
system chooses the latter, based on implicit ORIGIN
rules which tell it to choose between operators by
rating them according to their inputs. The decision
function currently In use is;

5. Discussion

The initial program, PAE-1, is an artificial
intelligence program by any reasonable criteria. The
task It attempts, the inference from verbal behavior
to Problem Behavior Graph, is a task requiring intel-
ligence when done by humans. The mechanisms used are
those common to other artificial intelligence
programs that tackle somewhat similar tasks: grammars
to deal with the surface structure of natural language,
representation of knowledge, matching, and heuristic
search to Infer information not directly expressed in
the utterances.

PAS-I1 is a program that accomplishes the same
task as PAS-I. Hence, it too is an artificial intel-
ligence program. But when looked at structurally it
more closely resembles a data processing framework
or, possibly, a language. Something has happened in
going from PAS-I to PAS-II, something worth Identi-
fying and discussing.

Let us start with Pltnner (3) and QA4 (81.""
These systems are languages for writing programs to
perform a class of artificial intelligence tasks. The

Choose to maximize: (3 x used-inputs)
(unused-inputs)

Space 'imitations prevent us from including the
entire listing. /Ä

Conflict and PBG rules are described in detail in
an earlier paper (15) .

There are other representatives of this class,
e.g., POPLER (1) and Conniver (10, U) .

 --- -—- ■-■

1

c

ii s

E

a >

a
2

m
E
n o

5 =
0) CO

<u u •= «

OJ C -o

< o
UJ o > Q o: a. < H

-S1 ^ —
? & i

•S o- SÄ o < (U ra c

n I *

i
^

Ci

L ■ ■■-'■laiiiiliinrfi ■

F .■■••llll JM IPJ.

exact boundarlen of these tasks are obscure bw their
central core is clear and includes a large fraction of
the tasks for which heuristic prograinshave been üuilt
-- theorem proving, roL it planning, symbolic manipu-
lation, etc. These systems were formed, essentially,
by taking a list processing framework and embedding
within it some of the ad hoc mechanism!! developed
for particular heuristic programs. They include back-
tracking, a generalized matching facility, a global
data base (accessed by pattern matching) and milti-
processing control. Kmbedding these mechanism:, with-
in a language makes possible their use in novel com-
binations (and in interaction with the other mecha-
nisms available in higher languages).

This same embedding of mechanisms into a language
system has occurred in the transition from PAS-1 to
PAS-I1. PAS-I1 provides a framework within „'hieb a
class of AI programs ran be easily constructed. This
class is not the same as that of the Planner/QA4
type system, which is more "mainline" artlficiai
intelligence. Rather, it appears to be characterized
as linguistic data processing, the essential feature
being the processing of long sequences of .:ata
(rat ler than just a sentence at a time). This class
includes, of course, protocol analysis. It also
includes a number of other tasks: content analysis
of more classical vrrieties (9), problem space con-
struction (2>, test grading, and what is coming to be
called semantic filtering.

The embodiment of mechanisms into a language
framework has occurred at two levels in PAS-I1, one
corresponding roughly to that of Planner/QA^ and the
other more specialized. The first level is repre-
sented by the PAS-I1 framework of run modes, rule
modes, common command language, editing system, and
control structure. This includes a set of mecha-
nisms for the data base (the run modes), a matching
facility (the common mechanism for how the rules work
on data"», and a backtrack facility (the saving of
buffers so that processing can be undone) . Added to
this is the explicit control structure for processing
within a stage and passing through the stages, which
corresponds to a weak method (4) in the same sense
as GPS's basic methods or the basic methods built into
the goal construct in Planner ^4. These privide a
schema of operation which, though almost content free,
is still a rational procedure for achieving the
overall goal. The mechanisms adopted in PAS-II are
somewhat more shaped than their correspondents in
Planner'QA4, e.g., there is not a single global data
base or one stratified by a general context mechanism,
rather the data is organized into homogeneous groups
(the modes) along structural lines.

The second level is the specialization of the
various modes to specific subtasks inherent in tasks
of the class: segmentation, parsing, normalization,
etc. The specialized rule systems contain the knowl-
edge about the processing. Thus writing any sort of
legal rules within a given rule system generates proc-
essing of the right sort (though it may not do the
right task). In this respect providing a single gener-
alized rule system or scheme for pattern matching and
pattern evoked actions (in the manner of Planner/QA4)
would move more of the knowledge required back across
the boundary from the language system (PAS-ID to the
coding within the system (the user program in PAS-II,
which is the set of actual rules in the rule modes) .

As one moves PAS-II in the direction of a
generalized system for a wider class of problems, one
can expect the collection of rule modes to increase,

be oming eventually, a library in the classic sub-
routine library sense. The system designer is then
faced with the problem of providing these modes wltn
the rules needed to define processing in the various
problem domains. However, one advantage of spec-
ialized rule systems is that when their structure
is highly constrained it becomes easy to predict the
effect of modifying rules in the system (a.; compared
to predicting the effect of modifying statements in
a general programming language). This sets the stage
for the development of self-modifying systems which
rewrite their oun rules or. In effect, learn to
improve their performance in some data processing
task (12, 13). Such a capability in an interactive
PAS-li-like system would enable the system to build
or modify its own rules for a particular problem
domain, using feedback from tue user to direct the
search for good sets of rules.

The evolution from PAS-I to PAS-11 in analogy
to the more general evolution going on toward
planner-like language systems should add to the
awareness that embedding mechanisms in language
remains a potent scheme for making advances in
artificial intelligence.

Acknowledgments

This paper will appear in the preprints for the
third International Joint Conference on Artificial
Intelligence (1JCA1-73). This research was supported
in part by Research Grant MH-07732 from the National
Institutes of Health and in part by the Advanced
Research Projects Agency of the Office of the
Secretary of Defense (1'44620-70-C-0107) which is
monitored by the Air Force Office of Scientific
Research.

References

1. Davies, D. J. K., POPLER: a POP-2 planner. M1P.
School of L'niversity of Edinburgh.

?. Hayes, J. R., and Waterman, D. A., Automatic
Problem Space Construction, Psychology Department,
Carnegie-Mellon University, 1973.

3. Hewitt, Carl, Description and theoretical analysis
of planner: A language for proving theorems and
manipulating models in a robot. AI report TR-258
(Ph.D. thesis). MIT AI Laboratory, Cambridge,
Massachusetts, 1972.

4. Newell, A., Heuristic programming: Ill-structured
problems, in Aronofsky, J. S. (ed.) Progress in
Operations Research, vol. 3, Wiley, 1969, pp.
362-414.

5. Newell, A., and Simon, H. A., Hu.nan Problem
Solving, Prentice-Hall, Englewood Cliffs, N.J.
1972.

6. Newell, A., A theoretical exploration of mechanisms
for coding the stimulus, in Melton, A. W., and
Martin, E. (eds.) Coding Processes in Human Memory,
Winston and Sons, Washington, D.C., 1972, pp.
373-434.

7. Newell, A., Simon, H. A., Hayes, R., and Cre.g, L.,
Report on a workshop in new techniques in cognitive
research. Computer Science Department, Carnegie-
Mellon University, 1972.

If,

-- - -^

■^w ^^^■^^•Wt^P^WIII ■ W I" ■ I I Ullll II IV^^W^^

8. RulUson, J. F., nerksen, J. A., and Waldinger,
K. J., QA4: A procedural calculu for Intuitive
reasoning, Stanford Research tnstlti.te, November

9. Stone, P. J , Dunphy, 1). c., Smith, M. s.,
Ogllvie, D. M., The General Inquirer, MIT,
Cambridge, Massachusetts, l.bh.

10. Sussman, Cerald, and McDermctt, Drew, Why
conniving is better than planning, MIT, Cambridge
Massachusetts, April 1972. *

11. Sussman, Gerald, and McDermott, Drew, Connlver
Reference Manual. MIT, Cambridge, Massachusetts,
May, 1972.

12. Waterman, D. A., Machine learning; of heuristics.
Ph.D. lucsis, Computer Science Department,

Stanford University, 1968.

13. Waterman, D. A., Generalization learning tech-
niques for automating the learning of heuristics,
Artificial InteUlgence, vol. i, nos. 1 and 2
1970, pp. 121-170.

14. Waterman, D. A., and Newell, A.. Protocol analy-
sis as a task for artificial Intelligence.
Artificial Intelligence, vol. 2, nos. 2 and 3
1971, pp. 285-318. '

15. Waterman, I). A., and Newell, A., Preliminary
results with a system for automatic protrcol
analysis. Carnegie-Mellon University, Computer
Science Department, 1973.

16. Waterman, D. A., PAS-II Reference Manual,
Psychology Lcpartment, Carnegie-Mellon University,

5-

 ttmtmm\ ,

